Background

IL-13 transforms cultured normal human bronchial epithelial (NHBE) cells into goblet cells that secrete mucus, leukotrienes and inflammatory mediators.

We have shown that clarithromycin, but not dexamethasone, can inhibit IL-13 goblet cell transformation of NHBE cells.

Objectives

We hypothesized that azithromycin and dexamethasone would decrease the production of immunomodulatory mediators in goblet cells and we evaluated inflammatory mediator production by multiplex ELISA.

Methods

Cell culture model

NHBE cells were grown for 14 days at air-liquid interface (ALI) with PBS vehicle or IL-13 5 ng/mL as well as azithromycin 1 μg/mL (AZ), dexamethasone 1 μg/mL (Dex), or DMSO vehicle.

Histological analysis

Histology was performed using H&E and periodic acid-Schiff (PAS) stains, and immunofluorescence for MUC5AC & acetylated α-tubulin for cilia.

Multiplex bead assay

Multiplex bead assay of 25 inflammatory mediators was performed in the apical supernatants and basal culture medium from these cultured cells.

Results

Ciliated cells are weakly stained with MUC5AC and strongly stained with acetylated α-tubulin at the surface of epithelial layers, whereas goblet cells with secretory granules strongly stained with MUC5AC, but there was no acetylated α-tubulin seen.

Discussion

Neither AZ or Dex inhibited goblet cell hyperplasia.

Th1 cytokines & chemokines:

IFN-γ and related chemokines were inhibited by both AZ and Dex.

Th2 cytokines:

IL-4 and IL-9 were inhibited by both AZ and Dex.

IL-13 was inhibited by AZ but not by Dex.

Th17 & Neutrophil activating cytokines:

IL-17 and IL-6 were inhibited both by AZ and Dex.

Other inflammatory cytokines:

TNF-α and MIP-1α were inhibited by both AZ and Dex.

IL-1β and MCP-1 were inhibited by Dex and apical IL-7 was inhibited by AZ.

Other growth factors:

Growth factors, basolateral FGF, PDGF and VEGF, which may contribute to airway remodeling were not inhibited by AZ, however PDGF was inhibited by Dex.

Conclusions

Inflammasome profiling suggests that the airway goblet cell is an inflammatory effector cell capable of producing proinflammatory cytokines and chemokines.

Although both AZ and Dex showed selective anti-inflammatory effects, AZ more effectively inhibited Th2 cytokines than Dex. AZ does not appear to have an effect on mediators associated with airway remodeling.